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Abstract

SILICON OXIDE NANOPARTICLES REVEAL THE ORGIN OF SILICATE GRAINS
IN CIRCUMSTELLAR ENVIRONMENTS
By Peneé Armaize Clayborne
A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University.

Virginia Commonwealth University, 2006

Major Director: Shiv N. Khanna,
Department of Physics

The processes leading to the widespread presence of crystalline silicates throughout the
galaxy and the origin of silicon nanoparticles thought to be responsible for the observed
extended red emission in diffuse galactic background are still far from being understood.
One of the most abundant oxygen bearing species in molecular astronomical regions is
SiO. It has been conjectured that silicate formation probably proceeds via the
agglomeration of these molecular species; however there are no studies to reveal the
microscopic mechanism. We have used a synergistic approach combining experiments in

molecular beams and first principles theoretical calculation to demonstrate that the passage

vi
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from SiO to SiO, proceeds via gradual oxygen enrichment of SinOm clusters and that the
smallest cascade involves Si>03, Si304, SiyOs, SisOg as the intermediate products. We also
demonstrate that as the SiO molecules cluster together, the chemistry drives the
agglomerates towards configurations such that the central core are pure Si, clusters while
the outer shell are SiO, molecules. The gap between the highest occupied molecular
orbital and the lowest unoccupied molecular orbital range from 0.84 to 3.84 eV and hence
can contribute to the observed extended red emission and blue luminescence. The findings
are of general interest in Astrophysics but are also critical to a fundamental understanding

of the interstellar extinction.



CHAPTER 1 Introduction

1.1 Silicon Monoxide & Silicates

In chemistry a silicate is a compound containing an anion in which one or more
central atoms are surrounded by electronegative ligands. Silicon dioxide (SiO;),
commonly referred to as silica, is sometimes considered a silicate. In geology and
astronomy, silicates represent types of rock and nanoparticles as a class of silicon and
oxide clusters with a range of oxygen to silicon ratios. Their importance is far reaching
in various scientific fields. Silicates can be seen in the form of minerals such as quartz
(Si0,) and forsterite (Mg>SiO4) [1], dense cloud material such as porous pyroxenes
(MgyFe 1 xSi03) [2], and in a multitude of other materials. The formation of these
oxygen rich bearing species throughout the galaxy are still far from being understood.
It has been proposed the silicate formation in the galaxy occurs by the agglomeration
of silicon monoxide in various astronomical regions [3-5].

Silicon Monoxide (SiO) is one of the most abundant molecules in the outflows
from oxygen rich stellar sources in which silicon is virtually tied up in the gas phase
[6]. The silicate ratio of oxygen to silicon is different form the SiO ratio of 1 to 1 and
for SiO, is 2 to 1. This brings up important questions: How exactly does the process of
oxygen enrichment occur? Is the process of oxygen enrichment a single step process or

does the oxygen enrichment occur in a multi-step process?

1



1.2 Extended Red Emissions & Blue Luminescence

Over the years scientist have been collecting data on the emissions observed from
the various astronomical environments [7-9]. These emission features typically give
astronomers clues to the composition of various astrophysical environments. One of
most debated of these emissions is the Extended Red Emission (ERE).

Since its discovery in the Red Rectangle (HD 44179) [10], these emissions have
been observed in a variety of astrophysical environments [11]. Extended Red
Emissions are a broad featureless emission band ranging from 540 to 800nm (1.5 eV -
2 eV) and the spectra can be seen in Figure 1.1. The origin of ERE is still highly
debated. It has been shown that whatever the source of ERE, it must meet at least two
main requirements, 1) it must have a high photoluminescence (PL) efficiency and 2)
the emitter must be highly abundant in the interstellar medium [12]. Recently it was
discovered that the occurrence of the ERE coexists with a blue luminescence and may
be seen as an added requirement for the species at the origin of the ERE [13]. There
have been several species hypothesized as the origin of the extended red emissions
such as polyaromatic hydrocarbons (PAHs), carbon nanoparticles, Cg, and silicon
nanoparticles [11-14].

A forerunner for the source of ERE are silicon nanoparticles (SNP) primarily due to
silicon's efficient photoluminescence (PL) as seen in semiconductors [15]. This was
further emphasized by Zhou et al. illustrating ERE may be possible by silicon
nanoparticles, even though it is dipole-forbidden [16]. A second reason for SNP to be

a viable candidate for the ERE band is the elemental abundance of silicon (Si) seen in
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the interstellar medium (ISM) [11-14]. This leads to the question: If SNPs are the ERE

agent, how do SNP form in the ISM from silicon monoxide (SiO) clusters? It has been
proposed by Witt et al. that (SiO), clusters would separate silicon into a core and a
SiO; sheath that would ultimately result into the formation of SNPs [14]. Even though
there have been various studies performed on Si O clusters as well as various
silicates, none have produced a definite theoretical, energetically favorable mechanism
for the formation of silicon nanoparticles or silica from the abundant silicon monoxide

clusters seen in the interstellar medium.

RELATIVE By

Figure 1.1: Spectra of extended red emissions (ERE). Reference: Schmidt, Cohen, &
Margon, 1980, ApJ, 239, L133.

1.3 Technological Applications

Silicon oxide clusters have attracted considerable attention recently from both the
experimental and theoretical communities due to their importance in the formation of
silicon nanowires (SiNWs) and the optical properties of silicon nanoparticles. It has

been shown that gas phase silicon monoxide clusters generated by evaporation sources
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play a crucial role in the nucleation and growth of SiNWs [17]. Jia and coworkers
fabricated SINWs by the thermal evaporation of SiO. The nanowires were then studied
by energy-dispersive X-ray spectroscopy (EDX) [18]. In order to obtain a higher yield
at lower cost, the mechanism for the formation of SINWs must be better understood.
This has led to various theoretical studies of silicon oxide clusters [19-21]. Zhang and
coworkers demonstrated theoretically that oxygen atom prefer to exist on the exterior
surfaces leaving a silicon core in the interior of various SiO clusters. Their results
illustrated that these SiO clusters may facilitate the growth of silicon nanowires [21].

SiO plays an important part in the optical properties of silicon nanocrystrals as
well. Recently it was shown that when silicon nanocrystals are embedded in silicon
oxide, it has a blue luminescence [22]. Even though this luminescence is much like
that of porous silicon (PS), the origin of the strong photoluminescence (PL) is still
being debated [23]. If the scientific community can better understand the mechanism
of formation, the origin of the blue photoluminescence may be answered.

1.4 Experimental Procedure

Castleman and co-workers generated SiO clusters in beams and studied them in a
femtosecond laser based time-of-flight mass spectrometer system equipped with a laser
vaporization (LaVa) source (Figure 1.2). The silicon oxide cluster were generated and
examined using three different methods. Figure 1.3 illustrates a representative distribution
produced from the laser vaporation of SiO solid under an argon environment and
photoionized using 1-2 mJ, 800 nm, 50 fs pulses. The product cationic clusters were then

analyzed using a typical time-of-flight mass spectrometer. Other experimental methods
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were employed including the study of silicon oxide clusters by vaporizing silicon under a
helium/oxygen environment and analyzing the resulting clusters, exactly as explained

above for comparison purposes.
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Figure 1.2: Metal lon flow tube used in experiment to create and detect clusters.
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CHAPTER 2 Theory

2.1 The Hamiltonian & Statistical Mechanics

The time-independent Schrédinger equation for an isolated N-electron system in

the Born-Oppenheimer approximation is given by
HY = E¥ .1)
where E is the electronic energy, W is the wave function and H is the Hamiltonian

operator. The Hamiltonian for a system of electrons and nuclei is defined as,

Z Z

2

e ZZe
p ‘ Z ZZM 2+ Z (2.2)

i#j r,.—rj‘ 213 ‘R RJ'

where electrons are denoted by lower case subscripts and nuclei, with charge Z; and mass
M;, denoted by upper case subscripts [24]. If we ignore the nuclear kinetic energy, the

fundamental Hamiltonian for the theory of electronic structure can be written,
H=T+7V,, +V, +E, 23)

In order to write the terms in their simplest form, Hartree atomic units h = m, = e = 4z/gy =

1, are adopted. The kinetic energy operator for electrons T is defined as,

A 1
fey- v (24)
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The potential acting on the electrons due to the nuclei V_and the electron-electron

ext

interaction ¥, are defined as,

Ve =2 Vi (r - R,) (2.5)
il
and
A 1 1
V. == (2.6
int 2 oy rl _rj| ( )

respectively. The final term, Ey is the classical interaction of nuclei with one another and
any other terms that contribute to the total energy of the system, but are not relevant to the
problem of describing the electrons.

The number of electrons per unit volume in an electronic system in a given state is

defined as the electron density. The electron density p(r) can be defined in terms of ¥ as
2
p(r) = N [ [[W(x,, xy,.c )y, iy 2.7)
Then integrating will lead to the total number of electrons for a system,
N = [pr)dr (2.8)
From quantum statistical mechanics one can arrive at expression for the energy U,

entropy S, and the Helmholtz free energy F, at any given temperature 7. The Helmholtz

free energy F'is defined as,

F = Trﬁ(ﬁ + %m ,aj (2.9)
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where B = 1/ksT and p is the density matrix. The trace (77) is over all states of the system

which have a fixed number of particles N. The last term is the entropy term and is the log
of the number of possible states of the system. The density matrix contains a general
property such that it is positive definite. Thus the correct equilibrium density matrix is the

positive definite matrix that minimizes the free energy, namely,
b=t (2.10)
0

where the partition function Z is given by,
O=Tre ™ = 2.11)
In a grand canonical ensemble [25-26], where the number of particles is allowed to

fluctuate around a mean value, the expression is allowed to include the chemical potential

p and the number operator N. The grand partition function € is then defined as,
Q = Tre P18 2.12)

where the trace is over all states with any particle number, and the new density matrix

becomes,
b =ée-ﬂ(ﬁ-ﬂﬁ) 2.13)
2.2 Hartree Method; Hartree-Fock Approximation

The Hartree method was first applied to atoms in 1927 by Hartree. The one-

electron equation,
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2
&V, ()= —2h—v2\11, F) -V (7)) + |:ezz [, *'1 JLP (F) (2.14)
m
Where V" is defined as,

(2.15)

yon ) = _Zezzi

r—R’

These sets of equations are known as the Hartree equations. These are a set of
equations because there is one for each occupied one-electron level. The equations are
non-linear and their wave functions and energies are solved by iteration. This is done by
guessing a form for the potential energy term in brackets (V') on which the equations are
solved. A new V¢ is then computed from the resulting wavefunctions and a new
Schrédinger equation is solved. This process continues until further iterations do not alter
the potential. This is a self-consistent field approximation [27].

The Hartree equations do not take into account the antisymmetric property of the
electrons. In 1930 Fock introduced an approximation referred to the Hartree-Fock
approximation. In this approach the antisymmetric determinant wavefunction is written
for a fixed number N of electrons and one finds the single determinant that minimizes the
total energy for the full interacting Hamiltonian (2.2). The resulting N x N Slater

determinant is,

¢1(’71s1) ¢1(’_€zsz) ¢I(FNSN)

(D(F]S]’Fzsza'“'aFNsN):% ¢2(’:151) ¢2(’j;zs2) ¢2(7'I:ISN) (216)
(N!)/z : : :

¢N(r131) ¢N(rNsN
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where the ¢i(Fj,s j) are single particle "spin-orbitals". Spin-orbitals are a product of a
function of the position ;' (Fj) and a function of the spin variable ¢, (s j). The spin-

orbitals must be linear independent and if they are orthonormal the equation simplifies
greatly. If the Hamiltonian is independent of spin or diagonal in the basis, the expectation

values of the Hamiltonian, using Hartree atomic units, is given by,
1
(@) =3 fary;( ){—EVZ +VoF )]w,-‘ (F)+ By +D+X 2.17)

where the first term groups together the single-body expectation values, which involve a
sum over orbitals. The final two terms, D and X, are the direct and exchange interactions

among electrons defined as,

— Z [drar'y:" (7,

ljSS i

Sy () (2.18)

and

——Z [drar'y; (7

IjS |

v i () (2.19)

respectively. Here the i = j "self-interaction" is included, but cancels in the sum of direct
and exchange terms.

The approach of the Hartree-Fock is to minimize the total energy. The energy can
be minimized with the restriction that it has the form of equation 2.13. Now if the spin
functions are quantized along an axis, the variation for each spin will yield the Hartree-

Fock equations,
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s sf= 1 = n o Si* (=0 Si (51 1 Sf=
&Y, (r)= —EVZ +I/ext(r)+ZJ Wjj (r )//jl (r )|7—F' Vi (r)
JsS;

vi(F)  (2.20)

=X [y F ()

F—F
where the exchange term is summed over all orbitals of the same spin. The exchange term
is an integral operator such that it is orthogonal for opposite spins. Thereby when i = j the
exchange term cancels with the Coulomb repulsion term. This prevents an electron from
interacting with itself which was a correction to the Hartree equations. Numerical methods
based on the Hartree-Fock method can be completed in a self-consistent loop. It should be
noted that the Hartree-Fock equations can be solved directly only in special cases such as

the homogenous electron gas and spherically symmetric atoms [24].

23 Density Functional Theory

Density Functional Theory (DFT) is a theory of correlated many-body systems. It
is widely used in Quantum Chemistry, Solid-State and Atomic and Molecular Physics.
Since its inception it has seen great interest in utilizing and improving the density
functional approach. It evolution began in 1927 with Thomas and Fermi, then the
theorems of Hohenberg and Kohn made it justifiable, and the Kohn-Sham approach in
1965 made density functional theory practical and widely used today.

The original density functional theory was proposed by L.H Thomas and E. Fermi
in 1927. In their approach the kinetic energy of the system of electrons is approximated as

a functional of the density. This treated the electrons as non-interacting in a homogeneous
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gas with a density equal to the local density at any given point. Later in 1930 Dirac
formulated the local approximation for exchange which leads to the energy functional for
electrons in an external potential ¥, (F),

S S S . SR S O - ()= G
Enlpl=C, [@rp()s + [d’rV,,(F)p(F)+ C, [d’rp()® += [d*rd’r 52202

2 ‘r -7 |
(2.21)

where the first term is the local approximation to the kinetic energy, the third term is the

local exchange, the last term is the classical Hartree energy and C; and C, are defined as,

2

3 2\2
C, == (3x%)° 222
| 10( ") (2.22)
and
!
c, =—3(3j3 (2.23)
4\

respectively.[28]
The ground state density can be found by minimizing the functional E,,.[p] for all

possible p(7) with the constraint on the total number of electrons
[drp(F)=N. (2.24)

The solution can be achieved by using the method of Lagrange multipliers where the
Lagrange multiplier is the Fermi energy. However this approach contained
approximations that are too crude and was lacking the essential physics and chemistry,
such as shell structures of atoms and binding of molecules to be used. Therefore it fell

short of being useful in describing electrons in matter.



14
Hohenberg and Kohn took the approach to make the density functional theory as an

exact theory of many-body systems. The Hohenberg-Kohn theorems became the basis of
density functional theory. In 1964 Hohenberg and Kohn legitimized the use of the electron
density as a basic variable with the first of two theorems. Theorem I states that for any

system of interacting particles in an external potential ¥/ (F ), the potential is determined

ext
uniquely by the ground state particle density p(? ), except for a constant. Since the density
determines the number of electrons, then the density also determines the ground state wave
function ¥ and inherently all other electronic properties. The second theorem provides the
energy variational principle. Theorem II states: a universal functional Fyg[p] for the

energy E[p] in terms of the density p(?) can be defined, valid for any external potential
V,. (? ) For any particular external potential, the exact ground state energy of the system
is the global minimum value of this functional, and the density p(?) that minimizes the
functional is the exact ground state density p, (F) These two theorems proposed by

Hohenberg-Kohn were the foundation of a self-consistent method involving independent
particles. However, the Kohn-Sham method turned the density functional theory into an
useful tool to perform rigorous calculations [28].

The Kohn-Sham approach replaces the interacting many-body system that obeys
the Hamiltonian with an auxiliary system that can be easily solved. The Kohn-Sham ansatz
assumes that the ground state density of the original system is equal to some non-
interacting system. What this does is lead to equations for the non-interacting system that

are equivalent to the density of the original interacting system. These equations are
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solvable with the difficult many-body terms in an exchange-correlation functional of the
density.  Then by solving these equations the end result is a ground state density and
energy of the original interacting system. This results in the accuracy of the answer being
controlled by the approximations in the exchange-correlation functional.

In order understand what Kohn and Sham did let's start by first realizing that the
actual calculations are performed on the auxiliary system. The auxiliary system is defined

by the effective Hamiltonian
Hi, = —%Vz + Vi (F) (2.25)

with the potential being

VI;S (F) = Vef\'t (F) + VHartree (F) + V;a (F) : (226)
For a system of N independent electrons that obey this Hamiltonian, the ground state has
one electron in each of the N orbitals (y;) with the lowest eigenvalues (¢';) of the

Hamiltonian. The density of this system is given by

Zpr s ZZ‘/’: ] (2.27)
i=l s
and the independent-particle kinetic energy Ts,
n- IS S e29

s =l
Then the classical Coulomb interaction energy of the density interacting with itself is

defined as the Hartree energy

E I i PEPE) (2.29)

P

Hartree
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The Kohn-Sham approach utilizes the Hohenberg-Kohn definition of the universal

functional and rewrites the expression for the ground state energy. The resulting

expression is written in the form

=T,[pl+ [V, (F)p(F)+ Epanreclp)+ E, + E.[p]. (2.30)

Where the V,.(r) is the external potential due to the nuclei and any other external fields
and Ej; is the interaction between the nuclei. The independent-particle kinetic energy 7 is
given explicitly as a functional of orbitals. The exchange-correlation energy E,. is the final
term on the right-hand side of the equation. The exchange-correlation energy takes into
account the many-body effects of the exchange and correlation. The expression for the

exchange-correlation energy is

E lp)=Fulpl- @ lo]+ Erprrc ). (2.31)

The exchange-correlation functional can be approximated as a local or nearly local

functional of the density in the form

E [p]= [#p(F)e..(p}7) (2.32)

where the ¢ ([p] 7) is the exchange-correlation density and depends only on the density.

The exchange-correlation density can be expressed via

£.(pl7 )——Id3 'p"‘”) (2.33)

The well known Kohn-Sham equations, (2.25) and (2.26) have an independent-

particle form with a potential that must be found self-consistently with the resulting

density. If the exact functional E_[p] were known, this would lead to the exact ground



17

state density and energy for the interacting system.[29] This makes one of the most crucial
quantities in the Kohn-Sham equations the exchange-correlation energy.[24]

There are relevant approximate exchange-correlation functionals in current use
today. They include local density approximations (often referred to the local spin density
approximation), generalized-gradient approximations, orbital-dependent functionals, and
hybrid functionals. The local density approximation (LDA) is simply an integral over all
space with the exchange-correlation density at each point assumed to be the same as in a
homogeneous electron gas. The generalized gradient approximation (GGA) is a term used
to describe a variety of ways proposed for functions that modify the behavior at large
gradients in such a way to preserve desired properties. Various forms of generalized-
gradient approximations have been proposed over the years and include Becke (B8S),
Perdew and Wang (PW91), and Perdew, Burke, and Enzerhof (PBE). Hybrid functionals
are a combination of orbital-dependent Hartree-Fock and an explicit density functional
such as the three-parameterized B3LYP.[24]

The long time problem with the DFT formalism has been the self-interaction seen
in many functionals for exchange and correlation. Within the Hartree-Fock theory, the
electron self-interaction is cancelled due to the exact treatments of exchange. However,
this is not true for the approximations made to the exchange-correlation functional and
since these terms involve large Coulomb interactions the errors can be extensive. In order
to correct this unphysical self-interaction several methods add "self-interaction

corrections".[24, 28]
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Density functional theory is a powerful tool in determining not only the electronic
structure, but can be used to determine the optical properties as well. In order to determine
the optical properties of clusters one must first understand that in the full many-body

problem excitations are described in terms of response functions ( ¥ ). Response functions

determine the response of the system to external perturbations and excitation energies in
the response. Therefore it is important for the theory to have the density response function
within the Kohn-Sham framework. Indeed, the Time-dependent density-functional theory
(TDDFT) does just that. It is important in the determination of excitation spectra and
optical properties [24]. It has been widely used in theoretical determination of optical
spectra in both small and large clusters. The formal structure can be derived beginning

from the action principle,

Y
5p(—F,t) =0 (2.34)
where
A= J' dt(‘{’(t)|{i% - I:I(t)}| w()). (2.35)

Now if the idea of replacing the density with the density of independent particles, this will
lead to the time-dependent Kohn-Sham density functional theory TDDFT. In the TDDFT

there is a time-dependent Schrodinger-like equation
ihd"’fot(’) =H( W, (t) (2.36)

where the effective Hamiltonian is,
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= !

‘r—?

A, 0= -2v v, s [PC i, o)) @.37)

where V,_[p|F.t) is a function of r and ¢, as well as a functional of p(r’, t). So far the
work to date has used approximations where the exchange-correlation potential is the time-
independent functional of the density Vi [p(f)]r.[24]

The relation between density and a response function can be expressed by
pF,0)= [dF yF.7;0)5(F', o) (2.38)
where the exact density-density response function () has a spectral representation. In the

case of the Kohn-Sham approach, the time-dependent density response can be obtained

through the self-consistent equation:

Sp(F, w) = Idf’){(?, 7' a))éveff (7', w) (2.39)
where
, , ,op(F', ) »
&0y (F @) = 5v(F, @)+ [dF ‘F_—F,+6vxc(r,a)) (2.40)

These self-consistent equations are reliant on the density being v-representable and
noninteracting.[28] A prescription on how to calculate a photabsorption spectrum is as
follows: If on has a wave functions of the system in the Kohn-Sham formalism and
applies a perturbation of the form dvexo(7,f) = -kor,0(f). The amplitude k0 must be small in
order to keep the response of the system linear. This perturbation excites all frequencies of
the system with equal weight. Then the Kohn-Sham orbitals can be propagated for a finite

time and the dynamical polarizability can then be obtained from equation 2.41
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a,(w)= L [d*rr,op(F, o) (2.41)
Ky

In equation 2.41 8p(7, w) stands for the time Fourier transform of p(7,¢)— 5(F) where the

last terms is the ground-state density of the system. This method has been used in
successfully to calculate the photabsorption spectrum of several finite systems. [30] For
the time-dependent density functional theory, the simplest approximation is the spherical
jellium that ignores the atomic structure, but leads to the correct general features of the
optical spectra.[24]

The investigation of the SiO clusters are based on first principle calculations using
density-functional theory and the generalized gradient approximation for exchange
correlation. Various GGA functionals were implemented and compared with previous
theoretical and experimental results to determine the best functional to use for exchange
correlation. The energies, geometries of various Si,Oy, SinOn+1, SinOn.1 (1< n >12) clusters
were calculated using a linear combination of atomic orbitals-molecular orbital approach.
The atomic orbitals were represented by the double-zeta valence polarization basis set [31].
The calculations were carried out using the deMon code developed by Koster and co-
workers [32]. An auxiliary basis set was used for the variational fitting of the Coulomb
potential [33] and numerical integration of the exchange-correlation energy and potential
were performed on an adaptive grid [34]. Many initial configurations for the optimization
of structures were used in order to prevent getting trapped in a local minimum of the
potential energy surface. The structures were fully optimized without constraints [35]. The

optical properties were examined using the Gaussian 03 code [36]. The B3LYP exchange
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correlation functional was used because it is known to provide better optical absorption
energies. A 6-31+G* basis set using the same generalized gradient as described above was

used for structure optimization.



CHAPTER 3 Results on Silicon Oxide Clusters

3.1 Si,O0, (n = 1-12) Clusters

Figure 3.1 shows the structures for neutral Si,O, (n = 1-5). The ground states for
structures 2-4 are open ring structures. The Si-O bond length of these structures is 1.73 A
and is longer than the SiO bond length of 1.55 A. The SisOs structure marks the beginning
of a silicon core. The core consists of two or more Si-Si bonds in any given structure. The
SisOs structure has one five-membered ring and one six-membered ring that share one
silicon atom. The lone Si-Si bond is 2.47 A in length, while the Si-O bonds range from
1.69 to 1.71 A in length. As the cluster size begins to grow, so too does the silicon core.
SigO¢ has a core of three silicon atoms, while SigOg has a distinct planar core of four
silicon atoms (Figure 3.2). The silicon cores are surrounded by a sheath of SiO,
molecules. This trend continues up to Si;2O;, where the interior core becomes cage-like in
structure. The cage is then surrounded by the SiO; molecule on various sides (Figure 3.3).

Many of these structures are unique in the fact that not only do these structures
contain Si-Si cores and SiO, sheaths, but there is a predominance of five and six-
membered rings throughout the entire series. The presence of the five and six-membered
rings can be seen beginning at SisOs and continue throughout. The five membered rings

have an oxygen-deficient to silicon ratio, while the six-membered ratio is 1. In each of

22
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these cases, the bond lengths range from 1.68 to 1.71 A and 2.27 to 2.39 A for Si-O and Si-

Si respectively.

The stability of pure SiyOy clusters is important in gaining an understanding into
the geometries and any highly stable species. Therefore the atomization energy for each
cluster was determined. The atomization energy (AE) is defined as the amount of energy it
takes to break a cluster into #Si and nO atoms:

AE = nE(Si) + nE(O) - E(Si,0,) 3.1
The atomization energies can be seen in Table 3.1. The atomization energy of SiO is 8.21
eV while SiO; has the atomization energy of 12.78 eV or 6.39 eV per SiO bond. However,
the Si, molecule has a binding energy of 2.45 eV and as such it would be energetically
unfavorable for the formation of the Si-Si cores. However, the silicon atom is marked by
tetrahedral bonding in bulk while the oxygen atom is divalent. It can be seen that the
oxygen atoms are typically bonded to two silicon atoms. As the cluster size increases the
interior requires for a greater coordination number, thus silicon fills this requirement. This

coordination chemistry is creating the silicon cores and oxygen exterior.
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SiO Units AE Si-Si bonds Si-O bonds
2 18.44 2.51 1.74
3 28.93 n/a 1.71
4 38.72 n/a 1.70
5 49.15 2.47 1.69-1.71
6 59.40 2.29-2.49 1.70-1.73
7 70.98 243 1.68-1.72; 1.87
8 80.85 2.36 1.70-1.72
9 91.61 2.27 1.76
10 102.70 247 1.69-1.71
11 112.99 2.27-2.38 1.68
12 123.64 2.36-2.39 1.72

Table 3.1: Atomization energies (V) and Silicon bond lengths in angstroms (A) and

Silicon-Oxygen bond lengths also in angstroms for (SiO), clusters.
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Figure 3.1: Si,O, Structures for n = 1-5. Oxygen atoms are red, while silicon atoms are

gray in color.
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Figure 3.2: Si, O, Structures for n = 6-9. Oxygen atoms are red, while silicon atoms are

gray in color.
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Figure 3.3: Si,O, Structures for n = 10-12. Oxygen atoms are red, while silicon atoms are

gray in color.
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3.2 Energetics & Mechanisms

In order to identify any particular stable species it is important to evaluate the
energetics. The stability of pure SiO, clusters were evaluated by looking at the
atomization energy (AE), the energy gain (AE), defined as the amount of energy gained
when adding one SiO unit,

AE = E(Sip.1On.1) + E(SiO) - E(SiyOy) (3.2)

as well as the ionization potentials and electron affinities. The energy gain, ionization
potentials, and electron affinities can be seen in Table 3.2. The atomization energy
increases with size. This is indicative of stability toward atomic constituents. The energy
gain plot seen in Figure 3.4 for the pure Si,Oy clusters show three distinct peaks. These
distinct peaks occur where n = 3, 7, and 10, indicating Si303, Si;O; and Si;¢O;¢ are highly
stable. The largest of these three peaks is Si;O; and this cluster may be considered
unusually stable.

Notice in Figure 3.4 there is a large increase from n = 6 to n = 7. This means that
Si¢Os could be a highly unstable species. If SicO¢ is an unstable the question is raised
could this lead to fragmentation into silicon rich and oxygen rich clusters? In order to
answer this question the ground-state geometries of Si;,O,+; and Si O,.; were determined.
The issue is to determine any clusters where the energy gained in combining two units is
sufficient to break the cluster into an oxygen-rich and a silicon-rich fragment. The
energetics of the reaction

S1,0n + SimOm — Sinsm{Onmk + SijOk (3.3)
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SiO Units AE AEA VIP
2 2.02 0.92 9.04
3 2.28 0.93 8.57
4 1.58 1.46 8.27
5 2.21 1.99 7.69
6 2.05 2.28 7.45
7 3.37 1.87 7.36
8 1.66 2.36 6.68
9 2.25 2.18 6.58
10 3.18 0.69 8.09
11 2.09 2.13 5.19
12 2.51 2.03 7.24

Table 3.2: Energy Gain (AE), adiabatic electron affinity (AEA), and vertical ionization
potential (VIP) for (SiO), clusters n = 2-12.
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were determined using the total binding energy of the ground-state energies. The smallest
size where the reaction is energetically favorable is SisOs,
Sis0s + Si;0; — SisOg + Si,O (3.4
AE = -0.05eV
This leads to the formation of SisOs. It is also shown that SigO¢ can generate other

oxygen-rich clusters through the following processes,

Sig06 + SiO — SisOg + Si,0 (3.5)
AE = -0.03 eV

Sig0g + S0, — Sig07 + Si0 (3.6)
AE = -0.09 eV

The formation of SisO¢ begins the process for the production of SiO;. Two processes

SisOs + SigOs — Si303 + SigOs 3.7
AE = -0.04 eV
and
Sis06 + SisOs — Si304 + Si;0 (3.8)
AE = -0.67 eV

both convert SisOg to Si304. This is followed by the processes

Si304 + SigOs — 81,03 + Si707 (3.9)
AE = -0.04 eV
and
Si203 + SigOs — SiO; + Si;0 (3.10)

AE = -0.23 eV
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which are energetically favorable. These processes lead to the formation of SiO,. There
are similar reaction pathways that may be written for SigO- that is generated in equation
3.6. It is also important to note that the above pathway to SiO; is not unique. Many of the
larger clusters also lead to SiO, through other multi-step processes. The two clusters SisOs
and SigOg are special because they are the smallest of the clusters that begin and carry out
the process of oxygen enrichment. It should be noted that the theoretical calculations are
carried out at a temperature of 0 K while the temperatures in the interstellar medium (ISM)
range from 4 K to 1300 K. Also the mass outflows from evolved stars is a highly non-
equilibrium process and the vibrational temperatures are much less than the kinetic

temperatures.

3.3 Optical Properties

The process that produces the extended red emissions is believed to be a
photoluminescent one. These emissions have peaks that range from 610 to 820 nm. The
blue luminescence that can be seen in the interstellar medium consists of a range from 357
to 486 nm. The electronic structure calculations can give insight into whether or not these
silicon oxide clusters may lead to these types of emissions. Figure 3.5 shows the Highest
occupied molecular orbital - Lowest unoccupied molecular orbital (HOMO-LUMO) gap
range for SiO, clusters as well as Si,Oy+1 and SiyOp; clusters. The gap ranges from 0.84
to 3.84 eV. Since this falls within the emission range, it may be possible for these clusters

to contribute to the emissions seen in various environments.
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In order to further examine the optical properties of these clusters, time-dependent
density functional (TD-DFT) calculations were performed using procedure described in
section 2.3. The final results for the optical gaps for the silicon systems of Si,Op, SizOns+1,
and Si,O,.; can be seen in Figure 3.6. The optical gaps range from 225 to 850 nm for
SiyO, and SiyOn+q.  If the SiyOn.; clusters are included, the range extends to 1150 nm.
Clearly this range is within the extended red emission and blue luminescence range.
However, this is not an emission spectra, but represents an absorption spectra. In order to
examine the emission spectra relaxations of the clusters must be further examined.

A very powerful tool into the composition of the interstellar medium is the infrared
(IR) spectra. Therefore the infrared spectra for the Si, O, clusters were determined. The IR
spectra for the series of Si,O, (n = 1-12) clusters yield intense peaks from 600 to 700 cm™.
These seem to be in agreement with the expected infrared spectra shown in the article Li
and Draine [36]. These vibrational modes show further illustrate the possibility for these

clusters to be a contributor to the extended red emissions seen in the interstellar medium.
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CHAPTER 4 Conclusions

4.1 Summary

In summary, it is shown there is an energetically mechanism for the formation of
oxygen rich species with SiO; as a final cluster through the collisions of SiO molecules.
The (SiO)y clusters begin as ring structures and proceed to form silicon-silicon cores. The
growth of these structures eventually leads to the formation of silicon cages surrounded by
five-membered rings. The cores from the silicon oxide clusters may be one originating
source of the extended red emissions seen in the diffuse galactic background. Also it has
been shown that Siz;O;, Si;O; and Si;gO;¢ are magic clusters in the series of silicon
monoxide clusters.

Even though this work has provided answers for several questions, there are many
unanswered questions still to be investigated. (1) Is SiO, growth facilitated by
agglomeration? (2) Does the prominence of rings and cages seen in the Si,O, clusters
continue for sizes where n > 12? (3) Do these structures hold true at larger temperatures?
(4) Is there a mechanism for the formation of larger silicon to oxygen ratios from silicon
oxide clusters? (5) What does the emission spectra for these clusters truly look like? As
one can see this work is only the beginning to understanding not only the mechanisms and
formation of cluster-assembled materials, but may eventually lead to better understanding

formation processes of our galaxy.
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